A hybrid vehicle is one that uses two or more distinct types of power, such as submarines that use diesel when surfaced and batteries when submerged. Other means to store energy include pressurized fluid in .
Hybrid powertrains are designed to switch from one power source to another to maximize both fuel efficiency and energy efficiency. In hybrid electric vehicles, for instance, the electric motor is more efficient at producing torque, or turning power, while the combustion engine is better for maintaining high speed. Improved efficiency, lower emissions, and reduced running costs relative to non-hybrid vehicles are three primary benefits of hybridization.
The first published prototype of an SHB is by Augustus Kinzel (US Patent 3'884'317) in 1975. In 1994 Bernie Macdonalds conceived the Electrilite SHB with power electronics allowing regenerative braking and pedaling while stationary. In 1995 Thomas Muller designed and built a "Fahrrad mit elektromagnetischem Antrieb" for his 1995 diploma thesis. In 1996 Jürg Blatter and Andreas Fuchs of Berne University of Applied Sciences built an SHB and in 1998 modified a Leitra tricycle (European patent EP 1165188). Until 2005 they built several prototype SH and quadricycles. In 1999 Harald Kutzke described an "active bicycle": the aim is to approach the ideal bicycle weighing nothing and having no drag by electronic compensation.
A SHEPB prototype made by David Kitson in Australia in 2014 used a lightweight brushless DC electric motor from an aerial drone and small hand-tool sized internal combustion engine, and a 3D printed drive system and lightweight housing, altogether weighing less than 4.5 kg. Active cooling keeps plastic parts from softening. The prototype uses a regular electric bicycle charge port.
China
The First Hybrid Evaluating locomotive was designed by rail research center Matrai in 1999 and built in 2000. It was an EMD G12 locomotive upgraded with batteries, a 200 kW diesel generator, and four AC motors.
Japan
Japan's first hybrid train with significant energy storage is the KiHa E200, with roof-mounted lithium-ion batteries.
India
Indian railway launched one of its kind CNG-Diesel hybrid trains in January 2015. The train has a 1400 hp engine which uses fumigation technology. The first of these trains is set to run on the 81 km long Rewari-Rohtak route. CNG is less-polluting alternative for diesel and petrol and is popular as an alternative fuel in India. Already many transport vehicles such as auto-rickshaws and buses run on CNG fuel.
North America
In the US, General Electric made a locomotive with sodium–nickel chloride (Na-NiCl2) battery storage. They expect ≥10% fuel economy.
Variant diesel electric locomotive include the Green Goat (GG) and Green Kid (GK) Switcher built by Canada's Railpower Technologies, with lead acid (Pba) batteries and 1000 to 2000 hp electric motors, and a new clean-burning ≈160 hp diesel generator. No fuel is wasted for idling: ≈60–85% of the time for these types of locomotives. It is unclear if regenerative braking is used; but in principle, it is easily utilized.
Since these engines typically need extra weight for traction purposes anyway the battery pack's weight is a negligible penalty. The diesel generator and batteries are normally built on an existing "retired" "yard" locomotive's frame. The existing motors and running gear are all rebuilt and reused. Fuel savings of 40–60% and up to 80% pollution reductions are claimed over a "typical" older switching/yard engine. The advantages hybrid cars have for frequent starts and stops and idle periods apply to typical switching yard use. "Green Goat" locomotives have been purchased by Canadian Pacific, BNSF, Kansas City Southern Railway and Union Pacific among others.
In 1978 students at Minneapolis, Minnesota's Hennepin Vocational Technical Center, converted a VW Beetle to a petro-hydraulic hybrid with off-the shelf components. A car rated at 32 mpg was returning 75 mpg with the 60 hp engine replaced by a 16 hp engine, and reached 70 mph.
In the 1990s, engineers at EPA's National Vehicle and Fuel Emissions Laboratory developed a petro-hydraulic powertrain for a typical American sedan car. The test car achieved over 80 mpg on combined EPA city/highway driving cycles. Acceleration was 0-60 mph in 8 seconds, using a 1.9-liter diesel engine. No lightweight materials were used. The EPA estimated that produced in high volumes the hydraulic components would add only $700 to the cost. Under EPA testing, a hydraulic hybrid Ford Expedition returned 32 mpg (7.4 L/100 km) City, and 22 mpg (11 L/100 km) highway. Capturing the power of hydraulics. AutoblogGreen. Retrieved on 2012-04-18. UPS currently has two trucks in service using this technology. EPA unveils hydraulic hybrid UPS delivery truck. Autoblog. Retrieved on 2012-04-18.
, there are 550 ships with an average of 1.6 MWh of batteries. The average was 500 kWh in 2016.
Newer hybrid ship-propulsion schemes include large power kite manufactured by companies such as SkySails. Towing kites can fly at heights several times higher than the tallest ship masts, capturing stronger and steadier winds.
The demonstrator aircraft is a Dimona motor glider, built by Diamond Aircraft Industries of Austria, which also carried out structural modifications to the aircraft. With a wingspan of , the airplane will be able to cruise at about on power from the fuel cell."Manned airplane powered by fuel cell makes flight tests. (metals/polymers/ceramics)." Advanced Materials & Processes. 165.6 (June 2007): 9(1). Expanded Academic ASAP. Gale. Gale Document Number:A166034681
Hybrid FanWings have been designed. A FanWing is created by two engines with the capability to autorotate and landing like a helicopter.
William H. Patton filed a patent application for a gasoline-electric hybrid rail-car propulsion system in early 1889, and for a similar hybrid boat propulsion system in mid 1889. There is no evidence that his hybrid boat met with any success, but he built a prototype hybrid tram and sold a small hybrid locomotive.
In 1899, Pieper developed the world's first petro-electric hybrid automobile. In 1900, Ferdinand Porsche developed a Series hybrid using two motor-in-wheel-hub arrangements with an internal combustion generator set providing the electric power; Porsche's hybrid set two-speed records. While liquid fuel/electric hybrids date back to the late 19th century, the braking regenerative hybrid was invented by David Arthurs, an electrical engineer from Springdale, Arkansas, in 1978–79. His home-converted Opel GT was reported to return as much as 75 mpg with plans still sold to this original design, and the "Mother Earth News" modified version on their website.
The plug-in-electric-vehicle (PEV) is becoming more and more common. It has the range needed in locations where there are wide gaps with no services. The batteries can be plugged into house (mains) electricity for charging, as well being charged while the engine is running.
Developing an infrastructure for battery electric vehicles would provide the advantage of virtually unrestricted highway range. Since many destinations are within 100 km of a major highway, this technology could reduce the need for expensive battery systems. However, private use of the existing electrical system is almost universally prohibited. Besides, the technology for such electrical infrastructure is largely outdated and, outside some cities, not widely distributed (see Conduit current collection, trams, electric rail, Tram, third rail). Updating the required electrical and infrastructure costs could perhaps be funded by toll revenue or by dedicated transportation taxes.
In petro-hydraulic hybrids, the energy recovery rate is high and therefore the system is more efficient than electric battery charged hybrids using the current electric battery technology, demonstrating a 60% to 70% increase in energy economy in US Environmental Protection Agency (EPA) testing. EPA Announces Partnership to Demonstrate World's First Full Hydraulic Hybrid Urban Delivery Vehicle | Modeling, Testing, and Research | US EPA. Epa.gov. Retrieved on 2012-04-18. The charging engine needs only to be sized for average usage with acceleration bursts using the stored energy in the hydraulic accumulator, which is charged when in low energy demanding vehicle operation. The charging engine runs at optimum speed and load for efficiency and longevity. Under tests undertaken by the US Environmental Protection Agency (EPA), a hydraulic hybrid Ford Expedition returned City, and highway. UPS currently has two trucks in service using this technology.
Although petro-hydraulic hybrid technology has been known for decades and used in trains as well as very large construction vehicles, the high costs of the equipment precluded the systems from lighter trucks and cars. In the modern sense, an experiment proved the viability of small petro-hydraulic hybrid road vehicles in 1978. A group of students at Minneapolis, Minnesota's Hennepin Vocational Technical Center, converted a VW Beetle car to run as a petro-hydraulic hybrid using off-the-shelf components. A car rated at was returning with the 60 hp engine replaced by a 16 hp engine. The experimental car reached .
In the 1990s, a team of engineers working at EPA's National Vehicle and Fuel Emissions Laboratory succeeded in developing a revolutionary type of petro-hydraulic hybrid powertrain that would propel a typical American sedan car. The test car achieved over 80 mpg on combined EPA city/highway driving cycles. Acceleration was 0-60 mph in 8 seconds, using a 1.9 L diesel engine. No lightweight materials were used. The EPA estimated that produced in high volumes the hydraulic components would add only $700 to the base cost of the vehicle.
The petro-hydraulic hybrid system has a faster and more efficient charge/discharge cycling than petro-electric hybrids and is also cheaper to build. The accumulator vessel size dictates total energy storage capacity and may require more space than an electric battery set. Any vehicle space consumed by a larger size of accumulator vessel may be offset by the need for a smaller sized charging engine, in HP and physical size.
Research is underway in large corporations and small companies. The focus has now switched to smaller vehicles. The system components were expensive which precluded installation in smaller trucks and cars. A drawback was that the power driving motors were not efficient enough at part load. A British company (Artemis Intelligent Power) made a breakthrough introducing an electronically controlled hydraulic motor/pump, the Digital Displacement® motor/pump. The pump is highly efficient at all speed ranges and loads, giving feasibility to small applications of petro-hydraulic hybrids. The company converted a BMW car as a test bed to prove viability. The BMW 530i gave double the mpg in city driving compared to the standard car. This test was using the standard 3,000 cc engine, with a smaller engine the figures would have been more impressive. The design of petro-hydraulic hybrids using well sized accumulators allows downsizing an engine to average power usage, not peak power usage. Peak power is provided by the energy stored in the accumulator. A smaller more efficient constant speed engine reduces weight and liberates space for a larger accumulator.
Current vehicle bodies are designed around the mechanicals of existing engine/transmission setups. It is restrictive and far from ideal to install petro-hydraulic mechanicals into existing bodies not designed for hydraulic setups. One research project's goal is to create a blank paper design new car, to maximize the packaging of petro-hydraulic hybrid components in the vehicle. All bulky hydraulic components are integrated into the chassis of the car. One design has claimed to return 130 mpg in tests by using a large hydraulic accumulator which is also the structural chassis of the car. The small hydraulic driving motors are incorporated within the wheel hubs driving the wheels and reversing to claw-back kinetic braking energy. The hub motors eliminate the need for friction brakes, mechanical transmissions, driveshafts, and U-joints, reducing costs and weight. Hydrostatic drive with no friction brakes is used in industrial vehicles. The aim is 170 mpg in average driving conditions. The energy created by shock absorbers and kinetic braking energy that normally would be wasted assists in charging the accumulator. A small fossil-fuelled piston engine sized for average power use charges the accumulator. The accumulator is sized at running the car for 15 minutes when fully charged. The aim is a fully charged accumulator that will produce a 0-60 mph acceleration speed of under 5 seconds using four wheel drive.
In January 2011 industry giant Chrysler announced a partnership with the US Environmental Protection Agency (EPA) to design and develop an experimental petro-hydraulic hybrid powertrain suitable for use in large passenger cars. In 2012 an existing production minivan was adapted to the new hydraulic powertrain for assessment.
PSA Peugeot Citroën exhibited an experimental "Hybrid Air" engine at the 2013 Geneva Motor Show. The vehicle uses nitrogen gas compressed by energy harvested from braking or deceleration to power a hydraulic drive which supplements power from its conventional gasoline engine. The hydraulic and electronic components were supplied by Robert Bosch GmbH. Mileage was estimated to be about on the Euro test cycle if installed in a Citroën C3 type of body. PSA Although the car was ready for production and was proven and feasible delivering the claimed results, Peugeot Citroën were unable to attract a major manufacturer to share the high development costs and are shelving the project until a partnership can be arranged.
The first mass-production parallel hybrid sold outside Japan was the 1st generation Honda Insight.
The Mercedes-Benz E 300 BlueTEC HYBRID released in 2012 only in European markets is a very rare mass-produced diesel hybrid vehicle powered by a Mercedes-Benz OM651 engine developing paired with a electric motor, positioned between the engine and the gearbox, for a combined output of . The vehicle has a fuel consumption rate of .
On-road examples include Honda Civic Hybrid, Honda Insight 2nd generation, Honda CR-Z, Honda Accord Hybrid, Mercedes Benz S400 BlueHYBRID, BMW 7 Series hybrids, General Motors , Suzuki S-Cross, Suzuki Wagon R and Smart fortwo with micro hybrid drive.
Modern versions such as the Toyota Hybrid Synergy Drive have a second electric motor/generator connected to the planetary gear. In cooperation with the traction motor/generator and the power-split device, this provides a continuously variable transmission.
On the open road, the primary power source is the internal combustion engine. When maximum power is required, for example, to overtake, the traction electric motor is used to assist. This increases the available power for a short period, giving the effect of having a larger engine than actually installed. In most applications, the combustion engine is switched off when the car is slow or stationary thereby reducing curbside emissions.
Passenger car installations include Toyota Prius, Ford Escape and Fusion, as well as Lexus RX400h, RX450h, GS450h, LS600h, and CT200h.
The BMW i3 with range extender is a production series-hybrid. It operates as an electric vehicle until the battery charge is low, and then activates an engine-powered generator to maintain power, and is also available without the range extender. The Fisker Karma was the first series-hybrid production vehicle.
When describing cars, the battery of a series-hybrid is usually charged by being plugged in—but a series-hybrid may also allow for a battery to only act as a buffer (and for regeneration purposes), and for the electric motor's power to be supplied constantly by a supporting engine. Series arrangements have been common in diesel-electric and ships. Ferdinand Porsche effectively invented this arrangement in speed-record-setting racing cars in the early 20th century, such as the Lohner–Porsche Mixte Hybrid. Porsche named his arrangement "System Mixt" and it was a wheel hub motor design, where each of the two front wheels was powered by a separate motor. This arrangement was sometimes referred to as an electric transmission, as the electric generator and driving motor replaced a mechanical transmission. The vehicle could not move unless the internal combustion engine was running.
In 1997 Toyota released the first series-hybrid bus sold in Japan. General Motors introduced the Chevy Volt series plug-in hybrid in 2010, aiming for an all-electric range of , though this car also has a mechanical connection between the engine and drivetrain. Supercapacitors combined with a lithium-ion battery bank have been used by AFS Trinity in a converted Saturn Vue SUV vehicle. Using supercapacitors they claim up to 150 mpg in a series-hybrid arrangement.
Nissan Note e-power is an example of a series hybrid technology since 2016 in Japan.
This concept is attractive to those seeking to minimize on-road emissions by avoiding—or at least minimizing—the use of ICE during daily driving. As with pure electric vehicles, the total emissions saving, for example in CO2 terms, is dependent upon the energy source of the electricity generating company.
For some users, this type of vehicle may also be financially attractive so long as the electrical energy being used is cheaper than the petrol/diesel that they would have otherwise used. Current tax systems in many European countries use mineral oil taxation as a major income source. This is generally not the case for electricity, which is taxed uniformly for the domestic customer, however that person uses it. Some electricity suppliers also offer price benefits for off-peak night users, which may further increase the attractiveness of the plug-in option for commuters and urban motorists.
Several automakers developed electric vehicle warning sounds designed to alert pedestrians to the presence of electric drive vehicles such as hybrid electric vehicle, plug-in hybrid electric vehicles and all-electric vehicles (EVs) travelling at low speeds. Their purpose is to make pedestrians, cyclists, the blind, and others aware of the vehicle's presence while operating in all-electric mode.
Vehicles in the market with such safety devices include the Nissan Leaf, Chevrolet Volt, Fisker Karma, Honda FCX Clarity, Nissan Fuga Hybrid/Infiniti M35, Hyundai ix35 FCEV, Hyundai Sonata Hybrid, 2012 Honda Fit EV, the 2012 Toyota Camry Hybrid, 2012 Lexus CT200h, and all the Prius family of cars.
These features make a hybrid vehicle particularly efficient for city traffic where there are frequent stops, coasting, and idling periods. In addition roadway noise are reduced, particularly at idling and low operating speeds, in comparison to conventional engine vehicles. For continuous high-speed highway use, these features are much less useful in reducing emissions.
An increase in fossil fuels is needed to build hybrid vehicles versus conventional cars. This increase is more than offset by reduced emissions when running the vehicle.
Hybrid emissions have been understated when comparing certification cycles to real-world driving. In one study using real-world driving data, it was shown they use on average 120 g of per km instead of the 44 g per km in official tests.
Toyota states that three Hybrid vehicles equal one battery electric vehicle in reduction effect from carbon neutrality viewpoint which means reducing emissions to zero throughout the entire life cycle of a product, starting from procurement of raw materials, manufacturing, and transportation to use, recycling, and disposal.
There are many types of batteries. Some are far more toxic than others. Lithium-ion is the least toxic of the batteries mentioned above.Environmental impact of hybrid car battery. (2008). Retrieved December 09, 2009 from Hybridcars.com
The toxicity levels and environmental impact of nickel metal hydride batteries—the type previously used in hybrids—are much lower than batteries like lead acid or nickel cadmium according to one source.Hybrid Cars. (2006). Retrieved December 9, 2009 from Hybrid Battery Toxicity, Hybridcars.com Another source claims nickel metal hydride batteries are much more toxic than lead batteries, also that recycling them and disposing of them safely is difficult. In general various soluble and insoluble nickel compounds, such as nickel chloride and nickel oxide, have known carcinogenic effects in chick embryos and rats./ The main nickel compound in NiMH batteries is nickel oxyhydroxide (NiOOH), which is used as the positive electrode. However Nickel Metal Hydride Batteries have fallen out of favour in hybrid vehicles as various lithium-ion chemistries have become more mature to market.
The lithium-ion battery has become a market leader in this segment due to its high energy density, stability, and cost when compared to other technologies. A market leader in this area is Panasonic with their partnership with Tesla
The lithium-ion batteries are appealing because they have the highest energy density of any rechargeable batteries and can produce a voltage more than three times that of nickel–metal hydride battery cell while simultaneously storing large quantities of electricity as well. The batteries also produce higher output (boosting vehicle power), higher efficiency (avoiding wasteful use of electricity), and provides excellent durability, compared with the life of the battery being roughly equivalent to the life of the vehicle. Additionally, the use of lithium-ion batteries reduces the overall weight of the vehicle and also achieves improved fuel economy of 30% better than petro-powered vehicles with a consequent reduction in CO2 emissions helping to prevent global warming. Environmental Activities. (2009). Retrieved December 01, 2009, from Lithium-ion battery for Hybrid Electric Vehicles: Hitachi.com
Lithium-ion batteries are also safer to recycle, with Volkswagen Group pioneering processes to recycle lithium-ion batteries; this is also being chased by various other large companies, such as BMW, Audi, Mercedes-Benz and Tesla. The main goal within many of these companies is to combat disinformation about the nature of lithium batteries, primarily that they are not recyclable, which primarily stem from articles discussing the difficulties of recycling.
Nearly all the rare-earth elements in the world come from China, and many analysts believe that an overall increase in Chinese electronics manufacturing will consume this entire supply by 2012. In addition, export quotas on Chinese rare-earth elements have resulted in an unknown amount of supply.
A few non-Chinese sources such as the advanced Hoidas Lake project in northern Canada as well as Mount Weld in Australia are currently under development; however, the barriers to entry are highLivergood, Reed CSIS.org and require years to go online.
Other approaches include personal rapid transit, a concept that offers automated on-demand non-stop transportation, on a network of specially built guideways.
Hybrid car companies like Toyota, Honda, Ford, and BMW have pulled together to create a movement of Hybrid vehicle sales pushed by Washington lobbyists to lower the world's emissions and become less reliant on our petroleum consumption.
In 2005, sales went beyond 200,000 Hybrids, but in retrospect that only reduced the global use for gasoline consumption by 200,000 gallons per day—a tiny fraction of the 360 million gallons used per day. According to Bradley Berman author of Driving Change—One Hybrid at a time, "cold economics shows that in real dollars, except for a brief spike in the 1970s, gas prices have remained remarkably steady and cheap. Fuel continues to represent a small part of the overall cost of owning and operating a personal vehicle".Berman, Bradley. "Driving change--one hybrid at a time." Business Perspectives Spring 2005: 30+. Academic OneFile. Web. 25 January 2014. Other marketing tactics include greenwashing which is the "unjustified appropriation of environmental virtue."Ehrenfeld, Temma. "Green, or Greenwash? Newsweek 14 July 2008: 56. Academic OneFile. Web. 25 January 2014. Temma Ehrenfeld explained in an article by Newsweek. Hybrids may be more efficient than many other gasoline motors as far as gasoline consumption is concerned but as far as being green and good for the environment is completely inaccurate.
Hybrid car companies have a long time to go if they expect to really go green. According to Harvard business professor Theodore Levitt states "managing products" and "meeting customers' needs", "you must adapt to consumer expectations and anticipation of future desires."Ottman, Jacquelyn A., Edwin R. Stafford, and Cathy L. Hartman. "Avoiding Green Marketing Myopia." Environment 48.5 (2006): 22,36,2. ProQuest. Web. 25 January 2014. This means people buy what they want, if they want a fuel efficient car they buy a Hybrid without thinking about the actual efficiency of the product. This "green myopia" as Ottman calls it, fails because marketers focus on the greenness of the product and not on the actual effectiveness.
Researchers and analysts say people are drawn to the new technology, as well as the convenience of fewer fill-ups. Secondly, people find it rewarding to own the better, newer, flashier, and so-called greener car.
In January 2020, using this term has been prohibited in Norway, for misleading advertising by Toyota and Lexus. "Our claim is based on the fact that customers never have to charge the battery of their vehicle, as it is recharged during the vehicle use. There is no intention to mislead customers, on the contrary: the point is to clearly explain the difference with plug-in hybrid vehicles."
More optimistic views as of 2006 include predictions that hybrids would dominate new car sales in the US and elsewhere over the next 10 to 20 years.AllianceBernstein, "The Emergence of Hybrid Vehicles: Ending Oil's Stranglehold on Transportation and the Economy," June 2006. Calcars.org Another approach, taken by Saurin Shah, examines the penetration rates (or S-curves) of four analogs (historical and current) to hybrid and electrical vehicles in an attempt to gauge how quickly the vehicle stock could be hybridized and/or electrified in the United States. The analogs are (1) the electric motors in US factories in the early 20th century, (2) diesel-electric locomotives on US railways in the 1920–1945 period, (3) a range of new automotive features/technologies introduced in the US over the past fifty years, and 4) e-bike purchases in China over the past few years. These analogs collectively suggest it would take at least 30 years for hybrid and electric vehicles to capture 80% of the US passenger vehicle stock.
The EPA expects the combined market share of new gasoline hybrid light-duty vehicles to reach 13.6% for the 2023 model year from 10.2% in the 2022 model year.
According to the release, the key details of the agreement are as follows:
|
|